Practice Paper-5

Newton's Academy **MATHEMATICS AND STATISTICS**

Time: 3 Hours

Max. Marks: 80

1

General Instructions:

The question paper is divided into FOUR sections.

- 1. Section A: Q. 1 contains Eight multiple choice type of questions carrying Two marks.
 - Q. 2 contains Four sub-questions each carrying One mark each.
- 2. Section B: Q. 3 to Q. 14 each carries Two mark. (Attempt any Eight)
- 3. Section C: Q. 15 to Q. 26 carries Three marks. (Attempt any Eight)
- Section D: O. 27 to O. 34 each carries Four marks. (Attempt any Five) 4.
- 5. Use of log table is allowed. Use of calculator is not allowed.
- Figures to the right indicate full marks. 6.
- 7. Use of graph paper is not necessary. Only rough sketch of graph is expected.
- For each MCQ, correct answer must be written along with its alphabet. 8.
- e.g.(a)....../(b)/(c)/(d)etc.
- 9. Start answers to each section on a new page.

SECTION-A

Q.1. Select and write the most appropriate answer from the given alternatives for each question: [16]

In $\triangle ABC$, if a = 2, b = 3 and sin A = $\frac{2}{3}$, then $\angle B =$ _____ i.

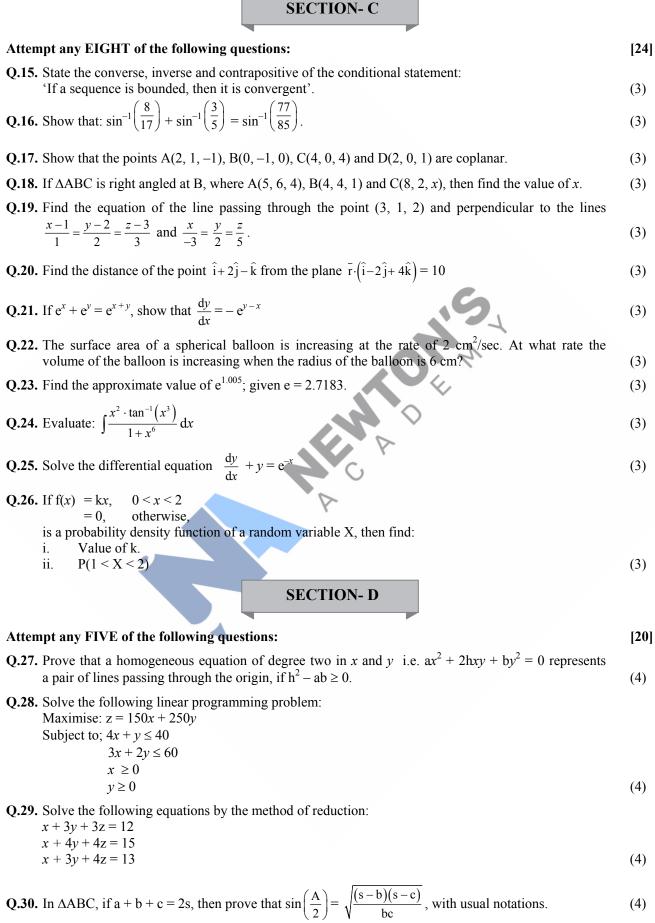
(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$ (2)

- If $\overline{a} = 3\hat{i} \hat{j} + 4\hat{k}$, $\overline{b} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\overline{c} = -5\hat{i} + 2\hat{j} + 3\hat{k}$, then $\overline{a} \cdot (\overline{b} \times \overline{c})$ is ii. (B) 110 (A) 100 (C) 109 (D) 108 (2)
- The cartesian equation of the line passing through the points A(4, 2, 1) and iii.
 - B(2, -1, 3) is _____. (A) $\frac{x+4}{2} = \frac{y-2}{3} = \frac{z-1}{-2}$ (B) $\frac{x-4}{-2} = \frac{y-2}{-3} = \frac{z-1}{-2}$ (C) $\frac{x-4}{2} = \frac{y-2}{2} = \frac{z-1}{2}$ (D) $\frac{x-4}{-2} = \frac{y-2}{3} = \frac{z-1}{-2}$ (2)

If the line $\bar{\mathbf{r}} = (\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ is parallel to the plane $\bar{\mathbf{r}} \cdot (3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + m\hat{\mathbf{k}}) = 10$, iv. then value of m is _____. (A) -2 (B) 2

- (C) ± 2 (D) 0 (2) If f(x) = 1 - x, for $0 < x \le 1 = k$, for x = 0 is continuous at x = 0, then k = 1
- v. 2 (B) -1 (D) 1 (A) 0 (C) (2)
- The function $f(x) = x^x$ is minimum at x =vi. (D) $-\frac{1}{e}$ (A) e (B) – e (C) (2)

vii. If
$$\int_{0}^{k} 4x^{3} dx = 16$$
, then the value of k is _____.
(A) 1 (B) 2 (C) 3 (D) 4 (2)



V		
	viii. Order and degree of differential equation $\frac{d^4 y}{dx^4} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3$ respectively are	
	 (A) Order: 1, Degree: 4 (B) Order: 4, Degree: 1 (C) Order: 6, Degree: 1 (D) Order: 1, Degree: 6 	(2)
Q.2.	Answer the following questions:i.Write the dual of $p \land \sim p \equiv F$ ii.Find the general solution of $\tan 2x = 0$ iii.Differentiate $\sin(x^2 + x)$ w.r.t. xiv.If $X \sim B(n, p)$ and $n = 10$, $E(X) = 5$, then find the value of p.	[4] (1) (1) (1) (1)
	SECTION- B	
	mpt any EIGHT of the following questions: Using truth table verify that $\sim (p \lor q) \equiv \sim p \land \sim q$	[16] (2)
Q.4.	Find the matrix of co-factors for the matrix $\begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$	(2)
Q.5.	Find the angle between the lines represented by $3x^2 + 4xy - 3y^2 = 0$	(2)
Q.6.	\overline{a} and \overline{b} are non-collinear vectors. If $\overline{c} = (x - 2) \overline{a} + \overline{b}$ and $\overline{d} = (2x + 1) \overline{a} - \overline{b}$ are collinear, then find the value of x.	(2)
Q.7.	If a line makes angles 90°, 135°, 45° with X, Y and Z axes respectively, then find its direction cosines.	(2)
Q.8.	Express the following circuit in symbolic form:	
		(2)
Q.9.	Differentiate log (sec $x + \tan x$) w.r.t. x .	(2)
O.10	• Evaluate: $\int \frac{dx}{x^2 + 4x + 8}$	(2)
Q.11	• Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos^2 x dx$	(2)
Q.12	• Solve the differential equation $\frac{dy}{dx} = x^2 y + y$	(2)
Q.13	. Find expected value of the random variable X whose probability mass function is:	(2)
	$X = x$ 1 2 3 $P(X = x)$ $\frac{1}{5}$ $\frac{2}{5}$ $\frac{2}{5}$	

Q.14. If $y = x \log x$, then find $\frac{d^2 y}{dx^2}$.

(2)

(4)

Q.31. Function f(x) is continuous on its domain [-2, 2], where

$$f(x) = \frac{\sin ax}{x} + 2, \text{ for } -2 \le x < 0$$

= 3x + 5, for 0 \le x \le 1
= $\sqrt{x^2 + 8} - b$, for 1 < x \le 2
Find the value of a + b + 2. (4)

Q.32. Prove that:
$$\int \sqrt{x^2 + a^2} \cdot dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + c$$
(4)

- Q.33. A fair coin is tossed 8 times. Find the probability that:
 - i. is shows no head

ii. it shows head at least once.

Q.34. Prove that:

$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$
(4)

